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ABSTRACT

To understand the influence of temperature on the rate of fatigue-crack growth in

high-strength metal alloys, constant-load-amplitude fatigue-crack grouth experiments

were carried out using a I-inch-thick (6.35 mm) mill-annealed Ti-6A1l-4V alloy plate

•as a model material. The rates of fatigue-crack growth were determined as a function

of temperature, ranging from room temperature .to about 290C (or,. about 550F/563K)

and as a function of the crack-tip stress-intensity factor K, in a dehumidified high-

purity argon environment. The results indicate that the rate of fatigue-crack growth

for K from 10 ksi in. to 30 ski 4in. (11 to 33 MN-m-3/ 2 ), corresponding to growth

rates from 2 x 10 - 7 to 4 x 10 - 4 inch per cycle (5. 08 x 10 - 6 to 1.16 x 10-2 mm/cycle)

are essentially independent of test temperature in this range. The dependence of the

rate of fatigue-crack growth on K appears to be separable into two regions, with a

transition occuring in the range of 2 to 3 x 10- inch per cycle (5. 08 to 7. 62 x 10-5 mm/

cycle). The transition correlates well with changes in both the microscopic and macro-

scopic appearances of the fracture surfaces, and suggests a change in the mechanism

nd the influence of microstructure on fatigue-crack growth.

Limited correlative experiments indicate that dehumidified oxygen and hydrogen

have no effect on the rate of fatigue-crack growth in this alloy, while distilled water.

increased the rate of crack growth slightly in the range tested. Crack growth in

vacuum (less than 5 x 10 - 6 torr) was about one-half that observed in the dehumidified

argon environment. Mass spectrometric analysis and other experimehts suggest that

this difference is produced by residual moisture (well below 30 ppm) in the argon

atmosphere. The possible influence of this residual moisture on the observed tempera-

ture independence is discussed.

Companion fractographic examinations suggest that the mechanisms for fatigue-

crack growth in the various environments are essentially the same. The observation

of ductile striations on specimens tested in vacuum (4.4 x 10 - 7 to 2.9 x 10 - 9 torr) is not

in agreement with previous investigations on aluminum alloys. Possible reasons for

this discrepancy are discussed.
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. I. INTRODUCTION

The impitance of fatigue-crack growth resistance in determining the serviceable

lives of aircraft structures has been well recognized [1*,. With the development of air-

crafts to operate at flight- speeds in excess of the speed of sound, such as the supersonic

transport (SST), the fatigue-crack growth resistance of materials over a wide range of

temperatures, associated with aerodynamic heating, needs to be considered. Recent

investigations have shown that atmospheric moisture and other environments (such as

water, salt water, salt and certain organic liquids) can also have a significant effect

on the rate of fatigue-crack growth in high-strength alloys [2-16] and that these environ-

mental influences are affected by temperature [10]. Thus, the performance of structures

in service will depend on the complex interactions between loads, temperatures and

environments encountered during the entire flight profile.

Fatigue-crack growth resistance of several stainless steels and titanium alloys

at room temperature and at 550 F ( or, about 290 C/ 563 K) has been evaluated by

Hudson [17]. For some of the materials, fatigue-crack growth resistance at -109F

(or, about -78C/195K) was also determined [17]. No consistent pattern of behavior

with temperature was evident. Since these tests were conducted in air, the results may

reflect the combined influences of atmospheric moisture and temperature [10, 11]. In

a recent series of experiments, the effect of temperature on the rate of fatigue-crack

growth in a 7075-T651 aluminum alloy was examined over a range of temperatures from

room temperature to approximately 100C (373K/212F) in distilled water and in dehumi-

dified hydrogen and oxygen environments [10]. Dehumidified high-purity argon (99. 9995

percent purity) was used as a reference environment. The results show that fatigue-

* See References.



crack growth is controlled by thermally activated processes with apparent activation.

energies that depend strongly on the crack-tip stress-intensity factor, AK or K, given-

iby linearelasticity for all of the test environments [10,11]. The strong effect of AK

on the apparent activation energy for crack growth implies that the influence of tempera--

ture on the rate of fatigue-crack growth will be a function of A Ki the effect of tempera-

ture being stronger at the lower A K levels [10,11]. These findings suggest that the

effect of temperature might be incorporated explicitly in design through an absolute

rate theory consideration of the fatigue-crack growth process. Verification of the

general applicability of this concept and further quantitative development of this approach

would be of both technological and fundamental importance.

Since only a limited amount of information of this type is available, an experimental

program was initiated to determine the rate of fatigue-crack growth on a single high-

strength alloy over a wide range of temperatures and crack growth rates. The experi-

ments were carried out principally in a dehumidified high-purity argon atmosphere to

"eliminate" the interaction effects of aggressive environments. Annealed Ti-6Al-4V

alloy was selected as model material for this study. Test temperature ranging from

room temperature to about 290C (or about 563K/550F) were used. Companion fractographic

examinations of selected specimens were made to determine possible changes in crack

morphology (or cracking mechanism) with changes in test temperature and environmen't.

The fatigue-crack growth and the fractographic studies will be discussed separately.



II. THE KINETICS OF CRACK GROWTH

MATERIAL AND EXPERIMENTAL WORK

Material and Specimens

inch-thick (6.35 mm) plates of mill-annealed Ti-6Al-4V alloywere used in this

investigation. * The nominal chemical composition of this material is given in Table 1.

Longitudinal and transverse tensile-test specimens and 3-inch-wide (76.2 mm) by

12-inch-long (305 mm) and single-edge notch (SEN) fracture-test specimens were pre-

pared in triplicate and tested. The tensile properties and crack growth resistance

curves (for monotonic loading) are shown in Table 1 and Figure 1 respectively, and are

typical of this alloy in the mill-annealed condition. These results suggest that the material

was cross rolled, with a cross rolling ratio of nearly 1 :1. Optical micrographs show

representative o(-p structure for this alloy, Figure 2.

Three-inch-wide (76.2 mm) by 14-inch-long (356 mm) center-cracked specimens,

oriented in the LT (or RW) orientation** were used for the fatigue-crack growth studies.

The initial center notch, about 0.4 inch (about 10 mm) long, was introduced by broaching.

The specimens were precracked in air, or in "ultra-high-purity" grade argon (99.999

percent purity) at a stress ratio R of 0.05 through a sequence of loads that reduce AK to

* Heat No. D-4987. Material conforms to AMS 4911 specification.

** ASTM Committee E-24 on Fracture Testing of Metals has adopted the following conven-

tion to denote the plane and direction of cracking [18]. The first letter, in the two letter

coding, denotes the direction normal (perpendicular) to the macroscopic crack plane,

while the second denotes the direction of crack growth. R, W and T have been used to

denote the rolling (longitudinal), width (transverse) and thickness (short transverse) direc-

tions respectively. To provide greater consistency and clarity, Committee E-24 will

adopt the designations L, T and S, respectively, f'r these three principal directions in

rolled plate product. The new designations are used in this report. For clarity, the

old designations are also included parenthetically.
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.level that-iss equal to or less than the selected star ting AK level for tAe actual experi-

ment. This precracking procedure provided fatigue-cracks of about 0. 08 inch (2 mm) :i

length from the ends of thestarter notches, such that subsequent fatigue-crackgrowth

will be through material that has not been altered by the notch preparation procedure and

will be unaffected by the starter notch geometry.

Test Environment

Dehumidified Matheson "Research" grade argon (99. 9995 percent purity) was

used as the principal test environment. Dehumidified Matheson "Ultra-Pure" grade

oxygen (99.95 percent purity) and hydrogen (99. 999 percent purity) and distilled water

were also used to provide supplemental information. The dehumidified gaseous environ-

ments were obtained by passing the respective gases through a gas purifier (Matheson

Model 460 purifier with Model 461-R cartridge for moisture), then through a series of

cold traps at less than -140C (-130K), and finally through a silicone fluid back-diffusion

trap and discharged. Distilled water used in the experiments was triple-distilled water

purchased commercially. Because of the highly reactive nature of the titanium alloys,

limited correlative experiments were conducted to compare test results obtained in

dehumidified high-purity argon with those obtained in vacuum at 2-5 x 10-7 torr. *

Experimental Procedures

The fatigue-crack growth experiments were carried out under axial loading at

R = 0. 05 in an 100, 000-lb. capacity MTS Systems closed-loop electro-hydraulic

* Experiments in vacuum were performed at NASA Langley Research Center.



testing :hins op era ed at either 5 or i 0 11z. Load control was estimated to be better

than. i .peenti :After .recracking the specimen, appropriate environental chambers

were clamped In place [7. For tests in distilled water, up-type chambers were used.

These were simply filled with distilled water. Testing was started after a short period

Sfor instrument stabilization. For the dehumidified gaseous environments, a rigorous

purging procedure was followed. The gas train was purged with "Ultra-High-Purity"

grade argon for at least 30 minutes. During this initial purging operation, the various

components of the gas train up-stream from the back-diffusion trap were heated to at

least 100C (373K). The cold-traps were then filled with liquid nitrogen, and the environ-

ment chamber-specimen assembly was again heated to a minimum of 100C (373K) while

maintaining the argon flow.** The specimen was then brought to the desired test tempera-

ture by means of electrical resistance heating tapes. (Temperature stability was better

than ± 2C during a working day.) Appropriate test environment was introduced and was

allowed to flow through the system for at least 15 minutes prior to the start of the experi-

ment. Continuous flow at a chamber pressure of about 5 psi (35 kN/m2) above ambient

was maintained throughout the experiment.

A continuous-recording electrical potential system was used for monitoring crack

growth. The detailed experimental procedure and calibration of this method have been

described elsewhere [19, 20]. Using a working current of 2.5 amperes, this system

provides an average measurement sensitivity of about 0. 003 inch (0. 076 mm) in half-

* Comparison experiments indicated that test frequencies from 1 tp 15 Hz. had negligible

effect on the rate of fatigue-crack in this material tested in a dehumidified argon environ-

ment.

** This step was combined with specimen heating whenever the test temperature was to

exceed 100C (373K).



crack length (a) pe'i microvolt ( v change in potential (0. 003 in./pv or 0.076 mm/pv),

for the n -thick (. 35 mm) Ti-6A-4V alloy specimens. The variation of measure-

ment sensitivity with crack length for a typical specimen is shown in Figure 3; the actual

sensitivity: aries somewhat with the thickness of each specimen. Resolution is better

than 0.0015 inch (0. 038 mm) in half-crack length, a. For comparison, both the elec-

trical potential method and a visual method, using a photogrid. technique [17] were used

to monitor crack growth on a single specimen. The results show the good agreement

between these two methods, Figure 4. (Note that corrections for crack front curvature

were needed in making this comparison, since the visual method measures the crack

lengths at the specimen surface whereas the electrical potential.method provides an

average through the specimen thickness).

RESULTS AND DISCUSSIONS

Fatigue-Crack Growth Results

Fatigue-crack growth rate data were determined from the slopes of the electrical

potential records and correlated with the crack-tip stress-intensity parameter A K.

AK = AO' rui f(a/W) (1)

where a0 = range of applied gross-section stress

a = half-crack length

f(a/W) = correction factor for finite-width specimen [21, 22].

W = specimen width

Data for tests conducted in dehumidified argon at temperatures from room temperature

to about 290C (or about 70 to 550F/300 to 563K) are shown in Figure 5. These results

covered a range of stress-intensity parameters (AK) from about 10 to 35 ksil'in. (11 to

38.5 N-m - 3/2) with corresponding crack growth rates (Aa/AN) from about 2 x 10-7



to 5 x 10- inch: per ycle (5. 08 x 10-6 to 1. 27 x 10. mm/cycle). Reproducibility wasto "S In AI g n Oq cy rd

generally within 10percent. Larger variations at the lower growth rates were princi-

pally caused by drift in the crack length monitoring system, associated with small changes

in specimen temperature, and possible delay produced by the precracking procedure [24].

The growth rates for selected values of A K, at the various temperatures, are shown in

a standard Arrhenius plot in Figure 6. It is seen that the rates of fatigue-crack growth,

for AK from 10 to 30 ksi in. (11 to 33 MN-m - 3/2 are essentially independent of tempera-

ture in the range of 20 to 290C (or, about 70 to 550F/300 to 563K), in contradistinction

to that of the 7075-T651 aluminum alloy [10]. The dependence of the rate of fatigue-

crack growth on A K appears to be separable into two regions, with a transition occurring

in the range of 2 to 3 x 10 - 6 inch per cycle (5. 08 to 7. 63 x 10- 5 mm/cycle), as shown

typically in Figure 8. Using a piece-wise power-law [23] fit to the experimental data,

that is A\ = C( K) (2)
AN (2)

the exponent n ranges from 7 to 10 for growth rates (ba/AN) between 2 x 10 - 7 and

2 x 10 - 6 inch per cycle (5. 08 x 10- 6 to 5. 08 x 10 - 5 mm/cycle), and is about 3 in the

range 2 x 10 - 6 to 5 x 10 - 4 inch per cycle (5. 08 x 10 - 5 to 1. 27 x 10 - 2 mm/cycle),

Figure 5. This transition suggests a change in the mechanism of fatigue-crack growth

and correlates well with a change in the macroscopic appearance of the fracture surface,

Figure 7. The fracture is quite coarse (macroscopically) at growth rates below the

transition range of 2 to 3 x 10 - 6 inch per cycle (5.08 to 7.62 x 10 - 5 mm/cycle) and

becomes smooth at the higher rates of growth. A more detailed dispussion of the

changes in fracture mechanism will be given in the fractographic section (Section MiI)

of this paper.



To complerexit :these studies, a limited number of experiments were carried out

.in dehumidified hydrogen and- xygen and in distilled water to examine the effects of

these envionments on the rate of fatigue-crackgrowth, and a correlative study was

conducted to determine if any differences existed between data obtained: in dehumidified

hi:gh-purity rgon and those obtained in vacuum at 10-6 to 1 0 - ' torr. The results of these

studies are shown in Figures 8 to 11. An additional test was carried out at -61C (-78F/

212K) and 2. 9 x i0-9 torr; the results of this test are shown in Figure 12. It is seen that

data obtained in dehumidified oxygen (Figure 8) and hydrogen (Figure 9) are nearly

identical to those for dehumidified argon for A K ranging from about 15 to 30 ksi/in.

(16.5 to 33 MN-m-3/2). For the same range of A K, distilled water increased the rate

of fatigue-crack growth by about 50 percent at low A K levels, whereas at the higher A K

levels the rate of growth approached that for dehumidified argon, Figure 10. The results

suggest that the rate of fatigue-crack growth in these environments are again independent

of temperature.

Data obtained in vacuum (2.1 x 10 - 7 and 4.4 x 10 - 7 torr) at room temperature

are some 30 to 50 percent slower than those obtained in dehumidified argon at low A K

levels and tended to converge with the dehumidified argon results at the higher A K

levels, Figure 11. Careful rechecking of testing machine calibration and experimental

procedures and additional comparative experiments, using distilled water from a single

source as the test environment, showed that these differences are real and significant

(the interlaboratory reproducibility being approximately 10 percent). On the basis of

these experiments, a mass spectrometric analysis of the dehumidified argon atmos-

phere was initiated, and further purification of the gases was attempted (see following

discussions). Test results obtained in vacuum at -61C (-78f/212K) were essentially the



same as those obtained at room temperature, and suggest that te tmperature indepen -

dence may be extended. to this low temperature.

: ass Spectrometric Analysis and Companion Experiments

A .sample for mass spectrometric analysis was collected by inserting a collection

bulb just down-stream of the environment chamber. The standard purging procedure

was used with the exception that the system was evacuated with a mechanical pump and

back-filled with argon several times before the regular purging sequence -to ensure

removal of air from the collection bulb. The sample was analyzed in a Hitachi mass

spectrometer. * The results indicate that the amount of nitrogen and oxygen in the

dehumidified argon sample was less than 30 and 8 ppm (parts per million) respectively.

These contaminants may be introduced by the sample collection procedure (i. e., from

air trapped in the stop- cocks), during transfer into the mass spectrometer, or by pos-

sible leakage in the environmental system. The determination of moisture level was

much more uncertain. The amount of moisture present could not be resolved from the

background moisture level in the instrument. Based on the sensitivity limits of the

instrument, it was estimated that the moisture content was well below 30 ppm.

Concurrent with this examination, attempts to further purify the test environment

were made. It was found that by using a titanium sublimation pump as a getter in the

argon stream, reduction in the rate of fatigue-crack growth (comparable to the percentage

difference between vacuum and dehumidified argon results), was obtained on another

mill-annealed Ti-6A1-4V alloy plate.

* Analysis performed by Dr. J. Sturm, Department of Chemistry, Lehigh University.



On the basis of these results, it is clear that residual impurities at levels below

30 ppm can stil1 affect fatigue-crack growth in this titanium alloy. Since the influence

of~ oxygen -at -1 :atmosphere(Figure 8) did not significantly increase the rate of fatigue-

crack growth, the active impurity is considered to be moisture (water vapor) present.

in the argon atmosphere.

Discussion

The absence of temperature dependence for the rate of fatigue-crack growth in

the mill-annealed Ti-6A1-4V alloy in the range of 2 x 10-7 to 5 x 10-4 inch per cycles

(5.08 x 10-6 to 1.27 x 10-2 mm/cycle) should be interpreted with care. Although the

results are in general agreement with that reported by Hudson [171 for a Ti-8A-1V-lMo

alloy, the apparent sensitivity of this titanium alloy to residual moisture of less than 30

ppm did not permit a clear resolution of the problem that the influence of temperature

associated with deformation may have been compensated by that resulting from environ-

mental embrittlement inapartially saturated environment [10, 25]. If one can assume

that the effect of environment has a decreasing branch with temperature as indicated

by Johnson and Willner [25] for environments containing a fixed amount of moisture,

then the fatigue-crack growth in a truly inert environment may be shown to be dependent

on temperature. This particular point still needs to be investigated.

The apparent lack of temperature dependence in the range of growth rates from

2 x 10-7 to 5 x 10-4 inch per cycle (5. 08 x 10-6 to 1. 27 x 10-2 mm/cycle) does not

imply complete temperature independence over the entire range of growth rates. For

growth rates in excess of about 10-4 inch per cycle (2. 5 x 10-3 mm/cycle), crack growth

approaches the onset of rapid fracture or fracture instability, and is expected to be



related to the fracture toughness of the material, KI or . Since fracture toughness

is.known to be dependent on temperature, some influence of temperature on the rate of

Sfatigue-crack growth at these high rates would be expected. :'It is interesting to note

.that, b comparing Figures 1 and ll, the value of Kmax (Kmax= K/(-R)) for transi-

tion to rapid fatigue-crack growth (i. e. A a/A N > 10 - 4 in/cycle or 2.5 x 10 - 3 mm/cycle)

corresponds: to the K level for. the onset of crack growth under monotonic loading.

Practically, the observed temperature independence permits a degree of simplifi-

cation in estimating the fatigue performance of structures intended for service at various

temperatures. However, the possible interactions between temperature -and load under

conditions of changing loads and temperatures encountered during service may be quite

significant and must be carefully explored. This problem is being investigated currently.



Il. FRACTOGRAPHY

:MAT ERIAL AND EXPERIMENTAL WORK :

Selected specimens, tested: in the varilous environments and at different temperatures

were examined by means of optical microscopy and electron-microfractography to deter-

mine possib!e.:changes in crack morphology, or cracking mechanism, and the relationship

between crack paths and microstructure.

For electron-microfractography, two-stage plastic-carbon replicas shadowed with

platinum-carbon were used. The shadowing direction was along the direction of crack.

prolongation. Replicas were taken from regions of the fracture surface corresponding

to observed macroscopic crack growth rates of 1 to 3 x 10- 5 inch per cycle (2.54 to 7.62 x

10- 4 mm/cycle), and to those above and below the observed macroscopic transition region,

-6 -2 to 3 x 10 - 6 inch per cycle (5. 08 to 7. 62 x 10 - 5 mm/cycle), Figures 5 and 7. They were

examined in a RCA EMU-3G electron microscope operated at 50 or 100 kV. Specimen

tilting was used to enhance contrast [26]; tilt angles up to 30 ° were used.

In pertinent cases, specimens were plated with nickel and then sectioned to

examine the interaction of the propagating crack with the alloy microstructure by optical

microscopy.

RESULTS AND DISCUSSIONS

Effects of Environment and Temperature

Typical electron-micrographs of fatigue fracture surfaces of specimens tested in

the various environments and temperatures are shown in Figure 13. The.results indicate

that there are no significant differences in the failure mode and fracture paths for speci-

mens tested at different temperatures and in the different environments, with ductile



fatigue striations .as .the predominant feature in all cases. The striation spacings cor-

respond, within expected accuracy, to the observed macroscopic crack growth rate of
.'r10:: W5thine.pec accu.racy,.steto

about 2 Ax 10 inchper cycle (5 x 104 mm/cycle). These observations are consistent

with the fact hat 'there were no significant influence of test environment and temperature

on the rate of fatigue-crack growth for this alloy.

The observation of ductile striations on specimens of Ti-6A1-4V alloy tested in

Vacuum (at 4.4 x 10 - to 2.9 x 10- 9 torr) is not in agreement with the results reported

by Pelloux [27] and Meyn [28] for aluminum alloys. These workers suggested that the

mechanism for fatigue-crack growth is different from that in air, and therefore, should

not lead to striation formation. Two probable reasons can be cited to account for the

apparent discrepancy, aside from the fact that different alloys are involved. Both

reasons are related to the ability to clearly resolve striations by replication electron

microscopy. First, the striations in specimens tested in vacuum have a flattened and

smeared appearance, Figure 13(c) and (d), and hence, would be more difficult to resolve.

Broek showed that by tilting the replica with respect to the electron beam, enhanced

.contrast may be obtained [26]; regions that appeared relatively "featureless" under one set

of viewing conditions were shown to contain fatigue striations and other structural features.

This technique was utilized to examine replicas from specimens tested in vacuum. The

results indeed demonstrate that, under certain orientations, regions that contain

striations can be made to appear nearly featureless, Figure 14. The second possibility

is that the rate of fatigue-crack growth, and hence, the striation spacing, could be well

below the resolution limits of replication electron-microscopy technique [29]; the limit

has been variously estimated at some 200 to 500 A. This may well be the case for the



work on alumini alloys reported by Pelloux (27] and Meyn [28]. Since these alloys

are kniow to be quite sensitive to the effect of atmospheric moisture, an ordr of

magnitude reduction in growth rate associated with a change in test environment, from

air to vacuum, is possible [2;3,10,12]. The striations, if present, at the reduced rates

of growth may not have been resolvable. Regardless, it is clear that the mechanisms

for fatigue-crack growth in the Ti-6AI-4V alloy are essentially the same for all the

environments investigated.

Low Growth Rates

For specimens tested at low A K levels, corresponding to growth rates below

about 2 x 10- 6 inch per cycle (5 x 10 - 5 mm/cycle), a macroscopically observable

coarse region of crack growth was observed (see Figure 7). Above approximately

2 x 10-6 inch per cycle (5 x 10-5 mm/cycle), the macroscopic texture of the fracture

surfaces appeared to be fine. This change in fracture appearance corresponds to the

transition in the crack-growth-rate versus A K curves, Figure 5, and suggests a

change in the mechanism for fatigue-crack growth. (By alternating between "high"

and "low" A K's to produce crack-growth-rates above and below the transition range

of 2 to 3 x 10-6 inch per cycle (5. 08 to 7. 62 x 10- 5 mm/cycle), alternate fine and

coarse regions of crack growth may be produced.)

Typical electron-micrographs of fatigue-crack surfaces in the fine and coarse

regions are shown in Figure 15. In the "fine" region, ductile fatigue striations pre-

dominate, Figure 15(a); while in the "coarse" region a more irregular fracture surface

with regions of "quasi-cleavage" are observed, Figure 15(b). Optical microscopy

results (on sections parallel to the plate surface) show extensive crack branching in the



-15-

coarse region, and indicate progression of cracks from one secnd-phase particle and

o-.ccasional fractuiwng of the second-phase particles, Figure 16. No detailed mechanism

for crack growth can be determined or postulated. Although no striations were observed,

a mechanism of crack growth associated with ductile fatigue striation formation could not

be ruled out, since at these low rates of growth individual striations (with spacings less

than 500 A) would not be resolvable with the current plastic-carbon replication techniques.



SUMMARY

Constant-load amplitude fatigue-crack growth experiments were carried out on a

i•-inch-thick (635 mm) mill-annealed Ti-6AI 4V alloy plate in dehumidified argon to

study the effects of temperature and crack driving force, characterized by the crack-tip

stress Intensity factor A K, on crack growth. A range of temperature from room

temperature to about 290C (or, 563K/550F) were investigated. The results indicate that

the rate of fatigue-crack growth, for A K from 10 ksi -'in. to 30 ksi An. (11 to 33 MN-m-3/2),

corresponding to growth rates from 2 x 10-7 to 4 x 10-4 inch per cycle (5. 08 x 10-.6 to

1.16 x 10-2 mm/cycle) were essentially unaffected by temperature in this range. The

dependence of the rate of fatigue-crack growth on A K appears to be separable into two

regions, with a transition occurring in the range of 2 to 3 x 10-6 inch per cycle (5.08 to

7.62 x 10-5 mm/cycle). The transition correlates well with changes in both the macro-

scopic and microscopic appearances of fracture surfaces, and suggests a change in the

Smechanism and the influence of microstructure on fatigue-crack growth.

Limited correlative experiments indicate that dehumidified oxygen and hydrogen-

had no effect on the rate of fatigue-crack growth in this alloy, while distilled water

increased the rate of crack growth by 30 to 50 percent for A K from 15 to 30 kit An.

(17.5 to 33 MN-m-3/2). Crack growth in vacuum, at less than 5 x 10-6 torr, was about

one-half that observed in the dehumidified gaseous environments for the same range

of AK. Mass spectrometric analysis and other experiments suggest that residual

moisture, well below 30 ppm, can have a deleterious effect on this alloy. The observed

temperature independence may still be caused by the compensating influences of moisture

and deformation on fatigue-crack growth, and should be investigated further.



Companion fratographic studies showed that the mechanisms for. fatigue-ciack

growth in the various environments, including vacuum, are essentially the same. The

observation of ductile striations on specimens tested in vacuum is not in agreement with

previous investigations on aluminum alloys. This discrepancy is believed to be caused

principally by problems of contrast and resolution in the replication electron-microfrac-

tography technique.

Although the apparent temperature independence provides a degree of simplifica-

tion in estimating the service performance of structure, the interactions between load

and temperature under conditions of changing loads and temperatures encountered during

service may be quite significant and should be carefully explored.
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CHEMICAL COMPOSITION AND
TENSILE PROPERTIES OF MATERIAL INVESTIGATED

Nominal Chemical Composition (weight percent)

C Al V ' Fe N H O Ti

0.10 5.50 3.50 0.30 0. 05 0.015 0.20 Balance
max, to to max. max. max. max.

6.75 4.50 .

Tensile Properties .

Specimen No. 0. 2% Offset Tensile Elongation
and' Yield Strength Strength in 2 in.

Direction ksi (MN/m2). ksi (MN/m2) percent

Longitudinal

T1-37L 136. 4 (941) 144.3 (995) • 14. 0

T1-38L 140. 8 (971) 147. 1 (1015) 14. 0

T1-39L 140. 2 (967) 146. 1 (1008) 14. 0

(Average) 139. 1 (959) 145. 8 (1006) 14. 0

Transverse

T1-40T 139.9 (965) 144. 8 (999) 14. O0

T1-41T 140. 9 (972) 144. 8 (999) 14.5

T1-42T 143.0 (986) 146.1 (1008) 14.0

(Average) 141.3 (974) 145.2 (1002) 14.2.



CRACK GROWTH - mm CRACK GROWTH - mm
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Figure 1: Crack growth resistance curves for 1/4-inch thick
m il-annealed Ti-6A.-4V alloy plate
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HALF - CRACK LENGTH (a ) mm

6 10 14 18 22

:6 
15

0 I I I 0

5L E
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1-

0.2 0.4 0.6 08

HALF - CRACK LENGTH (a)- in.

Figure 3: Variation of measurement sensitivity with
crack length for a typical test specimen
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HALF - CRACK LENGTH ( in.),- VISUAL METHOD

(with 0.012 in. dded to correct for crack frontcurvature)

HALF - CRACK LENGTH a (in.) - VISUAL METHOD
(with 0.012 in. added to correct for crack front curvature)

Figure 4: Correlation between crack length measurements from
visual and electrical-potential methods
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Figure 5: Rate of fatigue-crack growth in dehumidified argon at various temperatures
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Figure 6: Influence of temperature on fatigue-crack growth
in dehumidified argon at various K levels



I" ,. . '" ::-% :" ;..; : : .i.'." -.-; :. - - ," J" . .. '' 5 ., - - . 5 7 . ::.. . : , ..- -. ,

-. e.

- 23

• ,. , ,, •. ,-. , .. '. '. .. • • • "" • .. ' . . .. . ..: . . " . . -' 1~::, : . , - , : - . : .'_ . : : .-. . • • -. ; . .. . .: . :. " - ,

- .-4 .7

* -I - -- -- -

.,'".' -4"-,"~ ~ ~ ~ ~ ~ ~: ... .- ,!"': .::. .. .. " .'':. ' . .;. " .. , '.. ' ":" .: " : . ..

.I : . ' - :-. . - " . ... .- • "

- , . .) -. : • . . : : :.: . : .. : .- . , ... . . . . . . .. -.. .. .: -~ . . . . •

.o.

.. . ,; o

c, a t .o _ m f ue

, a .. 0 t 6 0 • 1

i~~ - -- i

:~~~ .. ... ' t

I .. _____ ----.:...---- --- ~--------. -- I- - -- -- l-'-- ;L -- : .- l.i.

Figure 7: Optical macro-fractog-raph showing transition from

• "coarse" to "fine" mode of fracture. (Specimen
" :, tested at 300 to 6000 lbs. at 10 Hz. after fatigue

precrack. Regions shown are, from left to right,

fatigue precrack, coarse region, fine region, and

tensile failure.)



STRESS INTENSITY .,RANGE (AK) MN-. m /

04 1 0 20 30 40 5060,o.17 -- -. -

* U

q-

10-5--0-6
I0 20 0006

E

STRESS I .
Dehumidified Argon

I- e

0 0"

10 20 30 40 50 60
STRESS INTENSITY RANGE (AK) ksi-in./2

Figure 8a: Rate of fatigue-crack growth in dehumidified oxygen at room temperature
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Figure 8b: Rate of fatigue-crack groth in dehumidified oxygen at 130 C
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Figure 9: Rate of fatigue-crack growth in dehumidified hydrogen at room temperature
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Figure 10a: Rate of fatigue-crack growth in distilled water at room temperature
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Figure 10b: Rate of fatigue-crack growth in distilled water at 85 C
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Figure 12: Rate of fatigue-crack growth in vacuum at room temperature and -61 C
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